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0[ Introduction

Consider a vertically!mounted rectangular enclosure
"width L and height H#\ _lled with a viscous\ Boussinesq
~uid[ The top and bottom horizontal walls are thermal
conductors\ maintained at temperatures TH and TC\ with
DT 0 "TH−TC#:1 × 9\ respectively[ If the vertical side!
walls are thermally insulated\ there are no ~uid motions\
and heat transfer is strictly conductive[ Consequently\
the appropriately!de_ned average conventional Nusselt
number Nu at the horizontal wall is unity[ The present
setup is top!heated\ and it should be distinguished from
the bottom!heated Benard!type con_guration with
DT ³ 9[ One key ingredient in the present arrangement
is the fact that the insulating sidewalls are straight and
vertical everywhere[ The insulating condition calls for the
vanishing of local temperature gradient in the normal
direction of the boundary wall[ In this case\ the con!
duction!controlled isotherms "hence\ iso!density lines#
are horizontal and equi!spaced everywhere\ and the ~uid
in the entire cavity is stably strati_ed with a linear density
pro_le in the vertical direction[ This implies that\ at the
vertical sidewalls\ the condition that the isotherms are
locally perpendicular to the wall is trivially satis_ed[ Fur!
thermore\ the pressure distribution is determined by
hydrostatic relation\ and the resulting isobars and iso!
density lines are parallel[ In this connection\ the so!called
baroclinic term in the vorticity equation\ i[e[\
"9p×9r#:r1\ is identically zero\ and the whole cavity is
vorticity!free[

If portions of the sidewalls are warped and:or non!
vertical\ the static equilibrium of the previous case will
have to be modi_ed fundamentally[ Since the sidewalls
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are thermally insulated\ i[e[\ 1T:1n � 9 at the wall where
n denotes the normal direction\ the isotherms "hence\ iso!
density lines# near the non!vertical wall sections should
meet the wall locally perpendicularly[ If the pressure dis!
tributions are still largely hydrostatic\ the iso!density lines
and isobars are not exactly parallel in these regions\ which
leads to a non!vanishing baroclinic term\ i[e[\
"9p×9r#:r1 � 9[ The consequence is that vorticity is gen!
erated in these localized regions\ which points to the
initiation of ~uid motions[ As can be easily understood\
even if the sidewalls are insulated\ the existence of non!
vertical portions of the sidewall gives rise to convective
activities[ It follows that\ because of convective ~uid
~ows\ the overall heat transfer from the top to bottom
horizontal walls of this case will be augmented compared
to the purely conductive case[ This simplistic idea can
be exploited as a possible device to add an element of
baroclinically!induced natural convective heat transfer in
an otherwise conduction!dominated ~uid in an enclosure[

There exists a vast collection of technical literature on
con_ned natural convection ð0Ð1Ł and studies on various
cases involving a non!rectangular enclosure are numer!
ous for a trapezoidal enclosure ð2Ð6Ł\ and for a par!
allelogram!shaped cavity ð7Ð09Ł[ In the ~ow con!
_guration of these preceding studies\ the horizontal walls
are insulators and the sidewalls are thermal conductors
on which constant temperatures are imposed[ As
remarked earlier\ the impetus of the present con_guration
lies in the presence of non!vertical segments of thermally!
insulating sidewalls[ The focus is on the explicit role of
local baroclinicity induced in the close neighborhood of
non!vertical portions of the sidewalls[

1[ Problem formulation

Flow is governed by the Navier!Stokes equations with
the Boussinesq ~uid approximation\ which\ after non!
dimensionalization\ reads]
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In the preceding equations\ dimensionless quantities are
de_ned as

"X\ Y# � "x\ y#:H^ "U\ V# � "u\ v#:"k:H#^P � pH1:r9k
1^

u � "T−T9#:DT^ Pr � n:k^ Ra � `bDTH2:nk\

in which\ "u\ v# denote velocity components in the hori!
zontal "x# and vertical "y# directions\ r9 and T9 refer
respectively to the center!point reference density and tem!
perature in the Boussinesq ~uid relation
r � r9ð0−b"T−T9#Ł\ n and k the kinetic viscosity and
thermal di}usivity\ and b the coe.cient of thermometric
expansion of the ~uid[ The ~uid properties are taken to
be constant[

The associated boundary conditions are expressed as

U � V � 9 at all solid walls^

u � 20[9 at the top and bottom horizontal endwalls\

respectively^

1u

1n
� 9 at the sidewalls[

Obviously\ the governing equations and boundary con!
ditions are standard and highly regularized[ The numeri!
cal solution procedure for this type of problem is well
established\ and the widely!utilized SIMPLE algorithm
ð00Ł was adopted[ A body!_tted coordinate transform
was implemented[ For most calculations\ an "79×79#
staggered and stretched grid was deployed to cluster mesh
points near the walls[ A series of computations were
repeated for benchmark problems to verify the reliability
and resolution of the code[ Grid!convergence tests were
performed for a variety of cavity shape and ~ow
conditions\ and the outcome proved that the numerical
methodologies used were robust and accurate[

2[ Results and discussion

All the computations were conducted for Pr � 6[9 to
simulate water[

First\ the results pertinent to the parallelogram!shape
are shown in Fig[ 0[ The nominal aspect ratio Ar ð�H:LŁ
is _xed at 0[9\ and the speci_c geometry is determined by
the incline angle f of the insulated sidewall[

Figure 0 exhibits exemplary plots of stream function c

and temperature u[ Here c is de_ned such that

u �
1c

1y
\ v � −

1c

1x
[

For high Ra\ the main ~ow is characterized by a counter!
clockwise circulation cell[ It is conspicuous that\ as Ra
increases\ the ~uid motion is concentrated in thin bound!
ary layers\ and in the interior core\ the ~uid is largely
stagnant and is almost linearly strati_ed in the vertical
direction[ Notice that the boundary layer on the sidewall
drives the motion\ and the boundary layer on the hori!
zontal wall is passive\ in that it provides a passageway
for the ~ow[ In much of the interior\ isotherms are hori!
zontal^ only in narrow regions in the immediate vicinity
of the slanted sidewall\ isotherms deviate from the hori!
zontal direction[ As emphasized previously\ these locally
non!horizontal isotherms generate ~ow[

The above general trends are more pronounced as the
incline angle f or Ra increases[

The enhancement of heat transfer is discernible in the
plot of local Nusselt number Nu

$0
0
1

1u

1YbY�9%
at the bottom horizontal endwall\ as exhibited in Fig[
1"a#[ In comparison to the case of a rectangular cavity
"f � 9># for which Nu is uniformly 0[9\ augmentation of
Nu is evident as f increases[ As illuminated in the ~ow
pattern of Fig[ 0\ in the neighborhood of the sharp corner
near X � 9 between the horizontal endwall and slanted
sidewall\ the convectively!driven ~ow does not fully
touch the horizontal surface[ This results in a lower value
of Nu[ In the opposite corner near X � 0[9\ the ~uid
vigorously washes out the walls as the ~ow smoothly
turns around the concave surfaces of the corner[ This
produces a high value of Nu\ and the Nu pro_les of Fig[
1"a# are consistent with this physical reasoning[

Compiling the computational results\ the enhancement
of overall heat transfer throughout the cavity\ which is
shown by the mean Nusselt number at the cold bottom
endwall\ de_ned as

Nu 0
0
1 g

1u

1Y
dXbY�9

\

is illustrated in Fig[ 1"b#[ Obviously\ the gain in Nu is
substantial as f increases\ and\ as anticipated\ the aug!
mentation is more conspicuous at large Ra[

Second\ the cavity geometry with undulating insulating
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Fig[ 0[ Flow in a parallelogram!shaped cavity] "a# f � 34>^ "b# Ra � 095[

sidewalls will be dealt with[ For an explicit mathematical
representation\ a sinusoidal form of nondimensional
amplitude o ð0l:HŁ and wavelength h ð0h:HŁ is selected[

Figure 2 exempli_es the changes in ~ow and tem!
perature _elds as Ra and the number of waves in the
sidewall shape\ N ð00:hŁ\ are altered\ while the amplitude
of sidewall waviness o is _xed at o � 9[0[ The results
disclose that the entire cavity appears to consist of a series
of overlying 1N mini!cavities^ the ~ow in each mini!cavity
is qualitatively similar to that in a parallelogram!shaped

cavity illustrated in Fig[ 0 with an e}ective height h:1[
The corresponding incline angle f of the uppermost mini!
cavity is positive\ producing a counter!clockwise cir!
culation cell^ for the next underlying mini!cavity\ f is
negative\ which generates a clockwise circulation cell[
This alternating sequence is repeated from the top to
bottom horizontal endwalls[ These features are a mani!
festation of the afore!stressed role played by baroclinicity
in the neighborhood of non!vertical sidewalls[

In order to assess the impact on the overall heat trans!
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Fig[ 1[ Nusselt number distributions] "a# local Nusselt number at Y � 9[9^ Ra � 095^ "b# mean Nusselt number at Y � 9[9[

port from the top to bottom endwalls\ it is advantageous
to utilize the previous results pertinent to a par!
allelogram!shaped cavity of Fig[ 0[ For a mini!cavity\ the
e}ective aspect ratio Arm 3 h:1\ the e}ective incline angle
fm 3 tan−0"3o:h#\ and the e}ective Rayleigh number
Ram 3 Ra = Ar3

m[ Since o is _xed "o � 9[0 in the present
computations#\ it follows that\ as the sidewall shape
becomes more wavy\ h and\ consequently\ Ram decrease

but =fm= increases[ As learned from the results for the
parallelogram!shaped cavities "see Fig[ 1#\ these two
e}ects make qualitatively opposite contributions to the
global heat transport in the vertical direction[ These con!
siderations suggest that there exists an optimal value of
N to maximize the overall transfer rate[ For this purpose\
Fig[ 3 exhibits the changes in the relative gain due to
convective heat transport when Ra u 092[ The ordinate
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Fig[ 2[ Flow in a cavity with wavy sidewalls[ Solid "dotted# lines denote counter!clockwise "clockwise# circulations^ "a# N � 1^ "b# N � 3[

of Fig[ 3 shows the quantity G 0 Qþ:Qþcond[ In the above\

Qþ 0 g 0
1u

1Y1Y�9

dX

represents the actual total heat transfer rate in the present
convective ~uid system\ and

Qþcond 0 g 0
1u

1Y1Y�9

dX

indicates the heat transport solely by conduction for the
given cavity geometry[ For a rectangular cavity\ Qþcond\ by
de_nition\ is 1[9[ However\ it should be recalled that\
for a non!rectangular cavity with non!vertical insulated
sidewalls\ Qþcond is not necessarily 1[9[ For this case\ the
conductively!controlled isotherms must meet the side!
walls in the locally perpendicular direction[ Therefore\
the isotherms in the vicinity of the horizontal walls near
the sidewalls are not perfectly parallel and equi!spaced\
which makes Qþcond deviate from 1[9[ The quantity G in
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Fig[ 3[ Variations in convective gain in overall heat transport\ G[

the present computations denotes the relative increase in
actual heat transport\ augmented by convective activities\
over the value attainable by conduction alone for the
speci_c geometry[

Figure 3 demonstrates that\ for large Ra\ say Ra u 094\
convection is the primary heat transfer mode[ It is also
apparent that there exists an ideal wavy form for the
sidewall which would produce maximal convectively!
initiated enhancement of heat transport[ Obviously\ the
optimal number of peaks in the sinusoidal wavy sidewall
shape\ N\ tends to increase as the nominal cavity!system
Rayleigh number Ra increases[

3[ Conclusion

Numerical results are scrutinized for two prototypical
forms of the insulating sidewall[ The key dynamical
element is the ~ow generation by local baroclinicity in the
immediate neighborhood of the non!vertical sidewalls[

For a cavity with slanted sidewalls\ at high Ra\ ~ows
are concentrated to the boundary layers on the walls[ For
a positive incline angle f\ a counter!clockwise circulation

cell occupies the cavity[ In the interior\ ~uid is mostly
motionless and is in a nearly!linear vertical strati_cation[
The enhancement of global heat transfer is more pro!
nounced as Ra and f increase[

For the case of a sinusoidal wavy sidewall\ the whole
cavity appears to be composed of 1N parallelogram!
shaped mini!cavities[ A series of alternating counter!
clockwise and clockwise circulation cells are discernible[
As N increases\ the e}ective Rayleigh number and the
e}ective incline angle of a mini!cavity make opposite
contributions to the overall heat transfer[ For a _xed
value of the amplitude of undulation in the sidewall
shape\ an optimal value of N is shown to exist which
would maximize the convective gain in total heat transfer[
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