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1. Introduction

Consider a vertically-mounted rectangular enclosure
(width L and height H), filled with a viscous, Boussinesq
fluid. The top and bottom horizontal walls are thermal
conductors, maintained at temperatures 7y and T, with
AT = (Ty—T)/2 > 0, respectively. If the vertical side-
walls are thermally insulated, there are no fluid motions,
and heat transfer is strictly conductive. Consequently,
the appropriately-defined average conventional Nusselt
number Nu at the horizontal wall is unity. The present
setup is top-heated, and it should be distinguished from
the bottom-heated Benard-type configuration with
AT < 0. One key ingredient in the present arrangement
is the fact that the insulating sidewalls are straight and
vertical everywhere. The insulating condition calls for the
vanishing of local temperature gradient in the normal
direction of the boundary wall. In this case, the con-
duction-controlled isotherms (hence, iso-density lines)
are horizontal and equi-spaced everywhere, and the fluid
in the entire cavity is stably stratified with a linear density
profile in the vertical direction. This implies that, at the
vertical sidewalls, the condition that the isotherms are
locally perpendicular to the wall is trivially satisfied. Fur-
thermore, the pressure distribution is determined by
hydrostatic relation, and the resulting isobars and iso-
density lines are parallel. In this connection, the so-called
baroclinic term in the vorticity equation, i.e.,
(Vp x Vp)/p?, is identically zero, and the whole cavity is
vorticity-free.

If portions of the sidewalls are warped and/or non-
vertical, the static equilibrium of the previous case will
have to be modified fundamentally. Since the sidewalls
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are thermally insulated, i.e., 07/dn = 0 at the wall where
n denotes the normal direction, the isotherms (hence, iso-
density lines) near the non-vertical wall sections should
meet the wall locally perpendicularly. If the pressure dis-
tributions are still largely hydrostatic, the iso-density lines
and isobars are not exactly parallel in these regions, which
leads to a non-vanishing baroclinic term, i.e.,
(Vp xVp)/p* # 0. The consequence is that vorticity is gen-
erated in these localized regions, which points to the
initiation of fluid motions. As can be easily understood,
even if the sidewalls are insulated, the existence of non-
vertical portions of the sidewall gives rise to convective
activities. It follows that, because of convective fluid
flows, the overall heat transfer from the top to bottom
horizontal walls of this case will be augmented compared
to the purely conductive case. This simplistic idea can
be exploited as a possible device to add an element of
baroclinically-induced natural convective heat transfer in
an otherwise conduction-dominated fluid in an enclosure.

There exists a vast collection of technical literature on
confined natural convection [1-2] and studies on various
cases involving a non-rectangular enclosure are numer-
ous for a trapezoidal enclosure [3—7], and for a par-
allelogram-shaped cavity [8-10]. In the flow con-
figuration of these preceding studies, the horizontal walls
are insulators and the sidewalls are thermal conductors
on which constant temperatures are imposed. As
remarked earlier, the impetus of the present configuration
lies in the presence of non-vertical segments of thermally-
insulating sidewalls. The focus is on the explicit role of
local baroclinicity induced in the close neighborhood of
non-vertical portions of the sidewalls.

2. Problem formulation
Flow is governed by the Navier-Stokes equations with

the Boussinesq fluid approximation, which, after non-
dimensionalization, reads:
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In the preceding equations, dimensionless quantities are
defined as

X.Y) = (e, 0)/H; (U, V) = (u,v)/(x/H);P = pH* |poic*;
0 = (T—Ty)/AT; Pr=v/x; Ra=gBATH|vx,

in which, (u,v) denote velocity components in the hori-
zontal (x) and vertical (y) directions, p, and T refer
respectively to the center-point reference density and tem-
perature in  the  Boussinesq fluid relation
p = po[l —P(T—T,)], v and « the kinetic viscosity and
thermal diffusivity, and f the coefficient of thermometric
expansion of the fluid. The fluid properties are taken to
be constant.
The associated boundary conditions are expressed as

U=V =0 atallsolid walls;
0 = +1.0 at the top and bottom horizontal endwalls,

respectively;
00
—— =0 at the sidewalls.
on

Obviously, the governing equations and boundary con-
ditions are standard and highly regularized. The numeri-
cal solution procedure for this type of problem is well
established, and the widely-utilized SIMPLE algorithm
[11] was adopted. A body-fitted coordinate transform
was implemented. For most calculations, an (80 x 80)
staggered and stretched grid was deployed to cluster mesh
points near the walls. A series of computations were
repeated for benchmark problems to verify the reliability
and resolution of the code. Grid-convergence tests were
performed for a variety of cavity shape and flow
conditions, and the outcome proved that the numerical
methodologies used were robust and accurate.

3. Results and discussion

All the computations were conducted for Pr = 7.0 to
simulate water.

First, the results pertinent to the parallelogram-shape
are shown in Fig. 1. The nominal aspect ratio Ar [= H/L]
is fixed at 1.0, and the specific geometry is determined by
the incline angle ¢ of the insulated sidewall.

Figure 1 exhibits exemplary plots of stream function i
and temperature 0. Here  is defined such that

I
u_ﬁy’ v=—2"

For high Ra, the main flow is characterized by a counter-
clockwise circulation cell. It is conspicuous that, as Ra
increases, the fluid motion is concentrated in thin bound-
ary layers, and in the interior core, the fluid is largely
stagnant and is almost linearly stratified in the vertical
direction. Notice that the boundary layer on the sidewall
drives the motion, and the boundary layer on the hori-
zontal wall is passive, in that it provides a passageway
for the flow. In much of the interior, isotherms are hori-
zontal; only in narrow regions in the immediate vicinity
of the slanted sidewall, isotherms deviate from the hori-
zontal direction. As emphasized previously, these locally
non-horizontal isotherms generate flow.

The above general trends are more pronounced as the
incline angle ¢ or Ra increases.

The enhancement of heat transfer is discernible in the
plot of local Nusselt number Nu

o]

at the bottom horizontal endwall, as exhibited in Fig.
2(a). In comparison to the case of a rectangular cavity
(¢ = 0°) for which Nu is uniformly 1.0, augmentation of
Nu is evident as ¢ increases. As illuminated in the flow
pattern of Fig. 1, in the neighborhood of the sharp corner
near X = 0 between the horizontal endwall and slanted
sidewall, the convectively-driven flow does not fully
touch the horizontal surface. This results in a lower value
of Nu. In the opposite corner near X = 1.0, the fluid
vigorously washes out the walls as the flow smoothly
turns around the concave surfaces of the corner. This
produces a high value of Nu, and the Nu profiles of Fig.
2(a) are consistent with this physical reasoning.

Compiling the computational results, the enhancement
of overall heat transfer throughout the cavity, which is
shown by the mean Nusselt number at the cold bottom
endwall, defined as

— 100
Nu _7J7dX

s
Y=0

2oy

is illustrated in Fig. 2(b). Obviously, the gain in Nu is
substantial as ¢ increases, and, as anticipated, the aug-
mentation is more conspicuous at large Ra.

Second, the cavity geometry with undulating insulating
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Fig. 1. Flow in a parallelogram-shaped cavity: (a) ¢ = 45°; (b) Ra = 10°.

sidewalls will be dealt with. For an explicit mathematical
representation, a sinusoidal form of nondimensional
amplitude ¢ [=//H] and wavelength n [=//H] is selected.

Figure 3 exemplifies the changes in flow and tem-
perature fields as Ra and the number of waves in the
sidewall shape, N [=1/y], are altered, while the amplitude
of sidewall waviness ¢ is fixed at ¢ = 0.1. The results
disclose that the entire cavity appears to consist of a series
of overlying 2 N mini-cavities; the flow in each mini-cavity
is qualitatively similar to that in a parallelogram-shaped

cavity illustrated in Fig. 1 with an effective height #/2.
The corresponding incline angle ¢ of the uppermost mini-
cavity is positive, producing a counter-clockwise cir-
culation cell; for the next underlying mini-cavity, ¢ is
negative, which generates a clockwise circulation cell.
This alternating sequence is repeated from the top to
bottom horizontal endwalls. These features are a mani-
festation of the afore-stressed role played by baroclinicity
in the neighborhood of non-vertical sidewalls.

In order to assess the impact on the overall heat trans-
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Fig. 2. Nusselt number distributions: (a) local Nusselt number at Y = 0.0; Ra = 10% (b) mean Nusselt number at ¥ = 0.0.

port from the top to bottom endwalls, it is advantageous
to utilize the previous results pertinent to a par-
allelogram-shaped cavity of Fig. 1. For a mini-cavity, the
effective aspect ratio Ar,, = n/2, the effective incline angle
¢ = tan~'(4¢/ny), and the effective Rayleigh number
Ra,, =~ Ra- Ar}. Since ¢ is fixed (¢ = 0.1 in the present
computations), it follows that, as the sidewall shape
becomes more wavy, 1 and, consequently, Ra,, decrease

but |¢,| increases. As learned from the results for the
parallelogram-shaped cavities (see Fig. 2), these two
effects make qualitatively opposite contributions to the
global heat transport in the vertical direction. These con-
siderations suggest that there exists an optimal value of
N to maximize the overall transfer rate. For this purpose,
Fig. 4 exhibits the changes in the relative gain due to
convective heat transport when Ra = 10°. The ordinate
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of Fig. 4 shows the quantity G = 0/O,onq. In the above,

. 00
0= J‘<57Y>Y:0 dx

represents the actual total heat transfer rate in the present
convective fluid system, and

. a0
Qcond = J(ﬁ)yzo dX

(b)

Fig. 3. Flow in a cavity with wavy sidewalls. Solid (dotted) lines denote counter-clockwise (clockwise) circulations; (a) N = 2; (b) N = 4.

indicates the heat transport solely by conduction for the
given cavity geometry. For a rectangular cavity, Q.ona, by
definition, is 2.0. However, it should be recalled that,
for a non-rectangular cavity with non-vertical insulated
sidewalls, O..nq is not necessarily 2.0. For this case, the
conductively-controlled isotherms must meet the side-
walls in the locally perpendicular direction. Therefore,
the isotherms in the vicinity of the horizontal walls near
the sidewalls are not perfectly parallel and equi-spaced,
which makes Q.4 deviate from 2.0. The quantity G in
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Fig. 4. Variations in convective gain in overall heat transport, G.

the present computations denotes the relative increase in
actual heat transport, augmented by convective activities,
over the value attainable by conduction alone for the
specific geometry.

Figure 4 demonstrates that, for large Ra, say Ra = 10°,
convection is the primary heat transfer mode. It is also
apparent that there exists an ideal wavy form for the
sidewall which would produce maximal convectively-
initiated enhancement of heat transport. Obviously, the
optimal number of peaks in the sinusoidal wavy sidewall
shape, N, tends to increase as the nominal cavity-system
Rayleigh number Ra increases.

4. Conclusion

Numerical results are scrutinized for two prototypical
forms of the insulating sidewall. The key dynamical
element is the flow generation by local baroclinicity in the
immediate neighborhood of the non-vertical sidewalls.

For a cavity with slanted sidewalls, at high Ra, flows
are concentrated to the boundary layers on the walls. For
a positive incline angle ¢, a counter-clockwise circulation

cell occupies the cavity. In the interior, fluid is mostly
motionless and is in a nearly-linear vertical stratification.
The enhancement of global heat transfer is more pro-
nounced as Ra and ¢ increase.

For the case of a sinusoidal wavy sidewall, the whole
cavity appears to be composed of 2N parallelogram-
shaped mini-cavities. A series of alternating counter-
clockwise and clockwise circulation cells are discernible.
As N increases, the effective Rayleigh number and the
effective incline angle of a mini-cavity make opposite
contributions to the overall heat transfer. For a fixed
value of the amplitude of undulation in the sidewall
shape, an optimal value of N is shown to exist which
would maximize the convective gain in total heat transfer.
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